Dendrimeric Template of Plasmodium falciparum Histidine Rich Protein II Repeat Motifs Bearing Asp→Asn Mutation Exhibits Heme Binding and β-Hematin Formation
نویسندگان
چکیده
Plasmodium falciparum (Pf) employs a crucial PfHRPII catalyzed reaction that converts toxic heme into hemozoin. Understanding heme polymerization mechanism is the first step for rational design of new drugs, targeting this pathway. Heme binding and hemozoin formation have been ascribed to PfHRPII aspartate carboxylate-heme metal ionic interactions. To investigate, if this ionic interaction is indeed pivotal, we examined the comparative heme binding and β-hematin forming abilities of a wild type dendrimeric peptide BNT1 {harboring the native sequence motif of PfHRPII (AHHAHHAADA)} versus a mutant dendrimeric peptide BNTM {in which ionic Aspartate residues have been replaced by the neutral Asparaginyl residues (AHHAHHAANA)}. UV and IR data reported here reveal that at pH 5, both BNT1 and BNTM exhibit comparable heme binding as well as β-hematin forming abilities, thus questioning the role of PfHRPII aspartate carboxylate-heme metal ionic interactions in heme binding and β-hematin formation. Based on our data and information in the literature we suggest the possible role of weak dispersive interactions like N-H···π and lone-pair···π in heme binding and hemozoin formation.
منابع مشابه
Identification and SAR Evaluation of Hemozoin-Inhibiting Benzamides Active against Plasmodium falciparum.
Quinoline antimalarials target hemozoin formation causing a cytotoxic accumulation of ferriprotoporphyrin IX (Fe(III)PPIX). Well-developed SAR models exist for β-hematin inhibition, parasite activity, and cellular mechanisms for this compound class, but no comparably detailed investigations exist for other hemozoin inhibiting chemotypes. Here, benzamide analogues based on previous HTS hits have...
متن کاملMechanism of malarial haem detoxification inhibition by chloroquine.
The haem detoxification pathway of the malaria parasite Plasmodium falciparum is a potential biochemical target for drug development. Free haem, released after haemoglobin degradation, is polymerized by the parasite to form haemozoin pigment. Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2) has been implicated as the catalytic scaffold for detoxification of haem in the malaria parasite....
متن کاملIdentification of β-hematin inhibitors in a high-throughput screening effort reveals scaffolds with in vitro antimalarial activity
The emergence of drug resistant strains of Plasmodium spp. creates a critical need for the development of novel antimalarials. Formation of hemozoin, a crystalline heme detoxification process vital to parasite survival serves as an important drug target. The quinoline antimalarials including chloroquine and amodiaquine owe their antimalarial activity to inhibition of hemozoin formation. Though ...
متن کاملIdentification of Essential Histidine Residues Involved in Heme Binding and Hemozoin Formation in Heme Detoxification Protein from Plasmodium falciparum
Malaria parasites digest hemoglobin within a food vacuole to supply amino acids, releasing the toxic product heme. During the detoxification, toxic free heme is converted into an insoluble crystalline form called hemozoin (Hz). Heme detoxification protein (HDP) in Plasmodium falciparum is one of the most potent of the hemozoin-producing enzymes. However, the reaction mechanisms of HDP are poorl...
متن کاملInteractions between antiplasmodial 3,6-diamino-1'-dimethyl-9-anilinoacridine and hematin and concanamycin A.
Antiplasmodial 9-anilinoacridine derivatives exert their effects either by inhibiting DNA topoisomerase (topo) II or by interfering with heme crystallization within the parasite acidic food vacuole. Previous studies have shown that analogs of 9-anilinoacridine containing 3,6-diamino substitutions (in the acridine ring) inhibit Plasmodium falciparum DNA topo II in situ, whereas those with a 3,6-...
متن کامل